TDA 5660 P
Modulator for TV, Video and Sound Signals

The monolithically integrated circuit TDA 5660 P is especially suitable as modulator for the 48 to 860 MHz frequency range and is applied e.g. in video recorders, cable converters, TV converter installations, demodulators, video generators, video security systems, amateur TV applications, as well as personal computers.

- Synchronizing level-clamping circuit
- Peak white value gain control
- Continuous adjustment of modulation index for positive and negative modulation
- Dynamic residual carrier setting
- FM sound modulator
- AM sound modulator
- Picture carrier to sound carrier adjustment
- Symmetrical mixer output
- Symmetrical oscillator with own RF ground
- Low radiation
- Superior frequency stability of main oscillator
- Superior frequency stability of sound oscillator
- Internal reference voltage

Circuit description

Via pin 1, the sound signal is capacitively coupled to the AF input for the FM modulation of the oscillator. An external circuitry sets the preemphasis. This signal is forwarded to a mixer which is influenced by the AM modulation input of pin 16. The picture to sound carrier ratio can be changed by connecting an external voltage to pin 16, which deviates from the internal reference voltage. In case, the sound carrier should not be FM but AM modulated, pin 1 should be connected to pin 2, while the AF signal is capacitively coupled to pin 16. Through an additional external DC voltage at pin 16, the set AM modulation index can be changed by overriding the internally adjusted control voltage for a fixed AM modulation index. At the output of the above described mixer the FM and/or AM modulated sound signal is added to the video signal and mixed with the oscillator signal in the RF mixer. A parallel resonant circuit is connected to the sound carrier oscillator at pin 17, 18. The unloaded Q of the resonant circuit must be Q = 25 and the parallel resistor R_T = 6.8 kΩ to ensure a picture to sound carrier ratio of 12.5 dB. At the same time, the capacitative and/or inductive reactance for the resonance frequency should have a value of X_C X_L ≈ 800 Ω.

The video signal with the negative synchronous level is capacitively connected to pin 10. The internal clamping circuit is referenced to the synchronizing level. Should the video signal change by 6 dB, this change will be compensated by the resonant circuit which is set to the peak white value. At pin 11, the current pulses of the peak white detector are filtered through the capacitor which also determines the control time constant. When pin 12 is connected to ground, the RF carrier switches from negative to positive video modulation.
With the variable resistor of \(R = \infty \ldots \). 0 Ω at pin 12, the modulation depth, beginning with \(R = \infty \) and a negative modulation of \(m_{0/N} = 80\% \), can be increased to \(m_{D/N} = 100\% \) and continued with a positive modulation of \(m_{D/P} = 100\% \) down to \(m_{D/P} = 88\% \) with \(R = 0 \) Ω. The internal reference voltage has to be capacitively blocked at pin 2.

The amplifier of the RF oscillator is available at pins 3-7. The oscillator operates as a symmetrical ECO circuit. The capacitive reactance for the resonance frequency should be \(X_C \approx 70 \) Ω between pins 3, 4 and 6, 7 and \(X_C \approx 26 \) Ω between pins 4, 6. In order to set the required residual carrier suppression, pin 9 is used to compensate for any dynamic asymmetry of the RF mixer during high frequencies of > 300 MHz. The oscillator chip ground, pin 5, should be connected to ground at the oscillator resonant circuit shielding. Via pin 3 and 7 an external oscillator signal can be injected inductively or capacitively. The peripheral layout of the pc board should be provided with a minimum shielding attenuation of approx. 80 dB between the oscillator pins 3-7 and the modulator outputs 13-15.

For optimum residual carrier suppression, the symmetric mixer outputs at pins 13, 15 should be connected to a matched balanced-to-unbalanced broadband transformer with excellent phase precision at 0 and 180 degrees, e.g. a Guanella transformer. The transmission loss should be less than 3 dB. In addition, an LC low pass filter combination is required at the output. The cut-off frequency of the low pass filter combination must exceed the maximum operating frequency.

If the application circuit according to figure 1, 2 is used, a multiplication factor V/RF (application) = V/RF (data sheet) 3.9 must be used to convert a 300 Ω symmetrical impedance to an asymmetrical impedance of 75 Ω for the stated RF output voltage \(V_o \) of the type specification in order to ensure a transmission attenuation of 0 dB for the balanced-to-unbalanced mixer.
Maximum ratings

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>-0.3</td>
<td>14.5 V</td>
</tr>
<tr>
<td>Current from pin 2</td>
<td>I_2</td>
<td>0</td>
<td>2 mA</td>
</tr>
<tr>
<td>Voltage at pin 1</td>
<td>V_1</td>
<td>$V_2 - 2$</td>
<td>$V_2 + 2$ V</td>
</tr>
<tr>
<td>Voltage at pin 9</td>
<td>V_9</td>
<td>-4</td>
<td>1 V</td>
</tr>
<tr>
<td>Voltage at pin 10</td>
<td>$V_{10_{pp}}$</td>
<td>1.5</td>
<td>V only via C (max. 1 µF)</td>
</tr>
<tr>
<td>Capacitance at pin 2</td>
<td>C_2</td>
<td>0</td>
<td>100 nF</td>
</tr>
<tr>
<td>Capacitance at pin 11</td>
<td>C_{11}</td>
<td>0</td>
<td>15 µF</td>
</tr>
<tr>
<td>Voltage at pin 12</td>
<td>V_{12}</td>
<td>-0.3</td>
<td>1.4 V</td>
</tr>
<tr>
<td>Voltage at pin 13</td>
<td>V_{13}</td>
<td>V_2</td>
<td>V_S V</td>
</tr>
<tr>
<td>Voltage at pin 15</td>
<td>V_{15}</td>
<td>V_2</td>
<td>V_S V</td>
</tr>
<tr>
<td>Voltage at pin 16</td>
<td>V_{16}</td>
<td>$V_2 - 1.5$</td>
<td>$V_2 + 1.5$ V</td>
</tr>
</tbody>
</table>

Only the external circuitry shown in application circuits 1 and 2 may be connected to pins 3, 4, 6, 7, 17 and 18.

Junction temperature	T_J		150 °C
Storage temperature	T_{stg}	-40	125 °C

Operating range

<table>
<thead>
<tr>
<th></th>
<th>min</th>
<th>max</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage</td>
<td>V_S</td>
<td>9.5</td>
<td>13.5 V</td>
</tr>
<tr>
<td>Video input frequency</td>
<td>f_{VIDEO}</td>
<td>0</td>
<td>5 MHz</td>
</tr>
<tr>
<td>Sound input frequency</td>
<td>f_{AF}</td>
<td>0</td>
<td>20 kHz</td>
</tr>
<tr>
<td>Output frequency</td>
<td>f_q</td>
<td>48</td>
<td>860 MHz</td>
</tr>
</tbody>
</table>

Ambient temperature | T_A | 0 | 70 °C |
| Sound oscillator | f_{OSC} | 4 | 7 MHz |
| Voltage at pin 13, 15| $V_{13,15}$ | V_2 | V_S V | depending on the oscillator circuitry at pins 3-7 |

This Material Copyrighted By Its Respective Manufacturer
Characteristics

\(V_S = 11 \text{ V}; \ T_A = 25 \text{ °C} \)

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Figure</th>
<th>min</th>
<th>typ</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_S)</td>
<td>1; 2</td>
<td>22</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>(V_2)</td>
<td>1; 2</td>
<td>7</td>
<td>7.5</td>
<td>8</td>
</tr>
<tr>
<td>(f_{\text{OSC}})</td>
<td>48</td>
<td>860</td>
<td>860</td>
<td>MHz</td>
</tr>
</tbody>
</table>

Turn-on start-up drift \(\Delta f_{\text{OSC}} \)

<table>
<thead>
<tr>
<th>V(_S) = 9.5-13.5 V</th>
<th>Ch 30</th>
<th>1; 2</th>
<th>0</th>
<th>-50</th>
<th>-500</th>
<th>kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch 40</td>
<td>1; 2</td>
<td>0</td>
<td>-200</td>
<td>-500</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(C_{10} \leq 1 \mu F)</td>
<td>Ch 40</td>
<td>1; 2</td>
<td>-150</td>
<td>150</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(I_{\text{leak}} \leq \pm 0.3 \mu A)</td>
<td>Ch 40</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>(\mu A)</td>
<td></td>
</tr>
</tbody>
</table>

Frequency drift as function of \(V_S \) \(-\Delta f_{\text{OSC}} \)

<table>
<thead>
<tr>
<th>(V_{10,pp})</th>
<th>at coupling capac.</th>
<th>21; 22</th>
<th>0.7</th>
<th>1.4</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C \leq 1 \mu F)</td>
<td>pos. mod.</td>
<td>2; 16</td>
<td>83</td>
<td>88</td>
<td>93</td>
</tr>
<tr>
<td>(I_{\text{leak}} \leq \pm 0.3 \mu A)</td>
<td>neg. mod.</td>
<td>1; 16</td>
<td>75</td>
<td>80</td>
<td>85</td>
</tr>
</tbody>
</table>

Video input current at pin 10 \(-I_{10} \)

Video input voltage at pin 10 \(V_{10,pp} \)

Modulation depth \(m_{D/N} \)

\[V_{\text{VIDEO,pp}} = 1 \text{ V}; \ f_{\text{VIDEO}} = 200 \text{ kHz sine signal} \]

Output impedance \(Z_{13}; Z_{15} \)

RF output voltage \(V_{\text{q, rms}} \)

Modulation signal in neg. modulation pin 12 open

Output capacitance \(C_{13} = C_{15} \)

<table>
<thead>
<tr>
<th>Ch 30</th>
<th>Ch 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

S parameter at pins 3, 4 and 6, 7

| 26 |

RF output phase \(\alpha_{13,15} \)

RF output voltage change; adjustment range

\[f = 543.25-623.25 \text{ MHz} \]

\[\Delta f = 80 \text{ MHz} \]

\[\text{Ch 30-Ch 40} \]

| 1 | 0 | 1.5 | dB |

RF output voltage change \(\Delta V_q \)

\[f = 100-300 \text{ MHz} \]

| 6 | 0 | 1.5 | dB |

RF output voltage change \(\Delta V_q \)

\[f = 48-100 \text{ MHz} \]

| 6 | 0 | 1.5 | dB |

Oscillator interference FM caused by AM modulation and coupling of the modulator output with the oscillator resonant circuit;

\[V_{\text{VIDEO,pp}} = 1 \text{ V}; \ f_{\text{VIDEO}} = 10 \text{ kHz; sine signal} \]

<table>
<thead>
<tr>
<th>Ch 30</th>
<th>Ch 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>1; 9</td>
<td>1; 9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
</tr>
</tbody>
</table>
Characteristics

$V_s = 11 \, \text{V}; \, T_A = 25 \, ^\circ\text{C}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Figure</th>
<th>min</th>
<th>typ</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermodulation ratio a_{MR}</td>
<td>$f_p + 1.07 , \text{MHz}$</td>
<td>1; 7</td>
<td>54</td>
<td>75</td>
<td>dB</td>
</tr>
<tr>
<td>Harmonic wave ratio a_H</td>
<td>$f_p + 8.8 , \text{MHz}$</td>
<td>1; 7</td>
<td>35</td>
<td>dB</td>
<td></td>
</tr>
<tr>
<td>Harmonic wave ratio a_H</td>
<td>without video signal 19, 20, 21 unmodulated video and sound carrier, measured with the specturm analyzer as difference between video carrier signal level and sideband signal level without video and sound modulation.</td>
<td>1; 7</td>
<td>35</td>
<td>48</td>
<td>dB</td>
</tr>
<tr>
<td>Harmonic wave ratio a_H</td>
<td>$f_p + 2f_s$</td>
<td>1; 7</td>
<td>35</td>
<td>48</td>
<td>dB</td>
</tr>
<tr>
<td>Harmonic wave ratio a_H</td>
<td>$f_p + 3f_s$</td>
<td>1; 7</td>
<td>42</td>
<td>48</td>
<td>dB</td>
</tr>
<tr>
<td>Sound carrier ratio a_{PS}</td>
<td>V_q with spectrum analyzer; loaded Q factor Q_L of the sound oscillator resonant circuit adjusted by R_S to provide the required picture to sound carrier ratio of 12.5 dB; $R_S = 6.8 , \text{k} \Omega$; $Q_u = 25$ of the sound oscillator circuit.</td>
<td>1; 7; 17</td>
<td>10</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>Color picture to sound carrier ratio a_p</td>
<td>$f_p + 4.4 , \text{MHz}$ (dependent on video signal)</td>
<td>1; 7; 17</td>
<td>10</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>All remaining harmonic waves</td>
<td>Multiple of fundamental wave of picture carrier, without video signal, measured with spectrum analyzer;</td>
<td>1; 7; 17</td>
<td>10</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>Amplitude response of the video signal a_V</td>
<td>$V_{VIDEO_{PP}} = 1 , \text{V}$ with additional modulation $f = 15 , \text{kHz-5 MHz}$ sine signal between black and white</td>
<td>1; 13</td>
<td>0</td>
<td>1.5</td>
<td>dB</td>
</tr>
<tr>
<td>Residual carrier suppression a_R</td>
<td>With adjustment at pin 9 Ch 30...Ch 40</td>
<td>1; 12</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static mixer balance characteristic $\Delta V_{13/15}$</td>
<td>V_9 adjusted to $\Delta V_{13/15}$ minimum</td>
<td>21; 23</td>
<td>-100</td>
<td>0</td>
<td>+100</td>
</tr>
<tr>
<td>Dynamic mixer balance characteristics $V_{13,rms}$</td>
<td>V_9 adjusted to $V_{13,rms}$ minimum</td>
<td>21; 23</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Stability of set modulation depth Δm_D</td>
<td>Video input voltage changes with sine signals $f = 0.2 , \text{MHz}; , \Delta V_{VIDEO_{PP}} = 1 , \text{V} \pm 3 , \text{dB}; , \text{Ch 30...Ch 40}; , V_s = 12 , \text{V}; , T_A = \text{const.}$</td>
<td>1; 7</td>
<td>1</td>
<td>$\pm 2.5%$</td>
<td></td>
</tr>
<tr>
<td>Stability of set modulation depth Δm_D</td>
<td>$f = 48...100 , \text{MHz}$</td>
<td>6</td>
<td>1</td>
<td>$\pm 2.5%$</td>
<td></td>
</tr>
<tr>
<td>Stability of set modulation depth Δm_D</td>
<td>$f = 100...300 , \text{MHz}$</td>
<td>6</td>
<td>2</td>
<td>$\pm 4%$</td>
<td></td>
</tr>
<tr>
<td>Stability of set modulation depth Δm_D</td>
<td>$T_A = 0-60 , ^\circ\text{C}; , V_s = 12 , \text{V}$</td>
<td>1</td>
<td>1</td>
<td>$\pm 2.5%$</td>
<td></td>
</tr>
</tbody>
</table>
Characteristics

\(V_S = 11 \text{ V}; \ T_A = 25 \text{ °C} \)

Stability of set modulation depth	\(\Delta m_D \)	\(V_S = 9.5\text{-}13; 5 \text{ V}; \ T_A = \text{const.} \)	Figure	min	typ	max
Interference product ratio sound in video; sound carrier FM mod.	\(a_{SP} \)	Ch 30...Ch 40	1; 11	48	60	dB
Signal-to-noise ratio in video; sound carrier unmodulated interference product ratio sound in video sound carrier AM mod.	\(a_{NP} \)	Ch 30...Ch 40	1; 11	48	74	dB
Umweighted FM noise level ratio video in sound; FuBK test picture as video signal	\(a_{PS} \)	Ch 39	1a; 8	48	54	dB
Unweighted FM noise level ratio video in sound	\(a_{PS} \)	Ch 39; test picture VU	2; 8	48	56	dB
Signal-to-noise ratio of sound oscillator	\(a_{SN} \)	G-Y; U/V	measured with measurement demodulator, video test signals and vector scope	1	10	%
Differential gain	\(G_{diff} \)	measured with measurement demodulator, video test signals and vector scope	1	10	%	
Differential phase	\(\varphi_{diff} \)	measured with measurement demodulator, video test signals and vector scope	1	10	%	
Period required for peak white detector to reach steady state for full modulation depth with 1 white pulse per half frame with control in steady state	\(t \)	measured with measurement demodulator, video test signals and vector scope	1	10	%	

\(C \text{ at pin 11} = 10 \mu F; \ I_{\text{fmax}} \leq 2 \mu A \)

\(t = 6 \mu s \)

\(t = 50 \mu s \)
Characteristics

$V_S = 11 \text{ V}; \ T_A = 25 \text{°C}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test conditions</th>
<th>Figure</th>
<th>min</th>
<th>typ</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting time for video signal change from 0 V_{pp} to 1.4 V_{pp}</td>
<td>t Video blanking signal content is uniform white level</td>
<td>1</td>
<td>120</td>
<td>500</td>
<td>μs</td>
</tr>
<tr>
<td>Setting time for video blanking signal from 100% white level to 42% grey level with subsequent rise in grey level to 71% of video blanking signal (due to decontrol process)</td>
<td>t</td>
<td>1</td>
<td>2.25</td>
<td>5</td>
<td>s</td>
</tr>
<tr>
<td>Sound oscillator frequency range</td>
<td>$f_{S/OSC}$ Unloaded Q factor of resonant circuit $Q_U = 25$; resonance frequency 5.66 MHz</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>MHz</td>
</tr>
<tr>
<td>Turn-on start-up drift</td>
<td>$\Delta f_{S/OSC}$ Capacitor TC value in sound oscillator circuit is 0, drift is based only on component heating. $T_A = \text{const.}; f_{S/OSC} = 5.5 \text{ MHz}$</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>kHz</td>
</tr>
<tr>
<td>Sound oscillator frequency operating voltage</td>
<td>$\Delta f_{S/OSC}$</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>kHz</td>
</tr>
<tr>
<td>FM mod. harmonic distortion</td>
<td>THD_{FM}</td>
<td>19; 19a</td>
<td>0.6</td>
<td>1.5</td>
<td>%</td>
</tr>
<tr>
<td>Audio preamplifier input impedance (dyn.); FM operation</td>
<td>Z_1 $V_{rms} = 150 \text{ mV}$</td>
<td>1</td>
<td>200</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>FM sound modulator, static modulation characteristic</td>
<td>$\Delta f_{S/OSC}$ $\Delta V_{1/2} = V_1 - V_2 = \pm 1 \text{ V}$; $f_{S/OSC} = 5.5 \text{ MHz}$; $Q_U = 25$</td>
<td>1; 14</td>
<td>±210</td>
<td>±270</td>
<td>±330</td>
</tr>
<tr>
<td>FM sound modulation characteristic (dynamic)</td>
<td>$\Delta f_{FM}/\Delta V_1$</td>
<td>1a; 10a</td>
<td>0.3</td>
<td>0.38</td>
<td>0.46</td>
</tr>
<tr>
<td>AM sound modulation factor</td>
<td>m $V_{AF} = 0.3 \text{ V}$</td>
<td>2; 3; 4a, b</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>AM sound modulation harmonic distortion</td>
<td>THD_{AM} $m = 86%$; $V_{AF} = 0.64 \text{ V}$; $f_{AF} = 1 \text{ kHz}$</td>
<td>\</td>
<td>0.7</td>
<td>3</td>
<td>%</td>
</tr>
<tr>
<td>AM audio preamplifier input impedance</td>
<td>Z_{16}</td>
<td>2</td>
<td>25</td>
<td>50</td>
<td>75</td>
</tr>
<tr>
<td>AM sound modulator input voltage</td>
<td>V_{AF} $m = 90%$; $f_{AF} = 1 \text{ kHz}$</td>
<td>2</td>
<td>0.5</td>
<td>0.67</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Pin description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AF input for FM modulation</td>
</tr>
<tr>
<td>2</td>
<td>Internal reference voltage</td>
</tr>
<tr>
<td>3</td>
<td>Symmetrical oscillator input</td>
</tr>
<tr>
<td>4</td>
<td>Symmetrical oscillator output</td>
</tr>
<tr>
<td>5</td>
<td>Oscillator ground</td>
</tr>
<tr>
<td>6</td>
<td>Symmetrical oscillator output</td>
</tr>
<tr>
<td>7</td>
<td>Symmetrical oscillator input</td>
</tr>
<tr>
<td>8</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>9</td>
<td>Dynamic residual carrier adjustment</td>
</tr>
<tr>
<td>10</td>
<td>Video input with clamping</td>
</tr>
<tr>
<td>11</td>
<td>Connection for smoothing capacitor for video control loop</td>
</tr>
<tr>
<td>12</td>
<td>Switch for positive and negative modulation as well as residual carrier control</td>
</tr>
<tr>
<td>13</td>
<td>Symmetrical RF output</td>
</tr>
<tr>
<td>14</td>
<td>Remaining ground of component</td>
</tr>
<tr>
<td>15</td>
<td>Symmetrical RF output</td>
</tr>
<tr>
<td>16</td>
<td>Picture to sound carrier ratio (adjustment and AM sound input)</td>
</tr>
<tr>
<td>17</td>
<td>Sound oscillator symmetrical input for tank circuit</td>
</tr>
<tr>
<td>18</td>
<td>Sound oscillator symmetrical input for tank circuit</td>
</tr>
</tbody>
</table>
Test and measurement circuit 1 for FM sound carrier and negative video modulation

5.5 MHz Sound Oscillator Tank Circuit

Figure 1
Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1a
Test and measurement circuit 1 for FM sound carrier and negative video modulation

Figure 1b
Test and measurement circuit 2 for FM sound carrier and negative video modulation

Figure 2
AM sound modulation measurement

Broadband Amplifier 30 dB; e.g.
OM 361 Fa. Philips

Modulation Measurement Device
e.g. FAM by R&S

Pin 9
$V_0 = -3.4 \text{ V}$

Test Circuit 2

AM AF input

Sound Generator
$f_{AF} = 1 \text{ kHz}$

V_0

Modulation

Filter: 30 Hz-20 kHz
Detector:
$(P+P)/2$ Type of
Modulation: AM

Measurement of AF
Input Level

AF input

RF input

Figure 3
AM sound carrier modulation index versus AF input voltage at pin 16

Figure 4a

AM sound carrier modulation index versus dc voltage offset at pin 16
$V_{AF\,\text{rms}} = 0.6\, V; \Delta V_{16/2} (V) = V_2 - V_{16}$

Figure 4b
Measurement circuits

Figure 5

Adjusted to Calibration
Frequency
12 623.25 MHz
13 300 MHz
14 100 MHz

Refer to Characteristics Specifications

TDA 5660 P

Remaining External Circuitry as Fig. 1

Figure 6

H 183-4

Measurement Transmitter
Frequency spectrum above the video carrier, measured at clamp V_a with a spectrum analyzer.

![Graph showing frequency spectrum with various markers and labels.]

Figure 7

- **BT** = Video Carrier
- **FT** = Frequency Carrier
- **TT** = Sound Carrier
Description of the measurement configuration to measure the noise voltage, video in sound

with 50 μs Deemphasis

Ch39

Audio Input

Measurement Demodulator
e.g. AFM2 by R&S

Audio Output

Modulation Measurement Device
e.g. FAM by R&S

Filter: 30 Hz-20 kHz
Detector: RMS \sqrt{2}

Broadband Amplifier
20 dB e.g. OM 361
Fa. Philips

\[V_q \]

Test Board According to Test Circuit 1a
at Pin 1

\(V_p \) - Adjustment Voltage, Oscillator Adjusted to Ch39

FM sound input
270 mV rms

Video input
1 V pp

S.G.
Sound Generator at Modulation Frequency \(f_{AF} = 400 \) Hz

FuBK or Other Test Pictures

Video Generator
e.g. VG 1000 Fa. Grundig

Figure 8

Calibration: A signal of \(V_{AF \text{ rms}} = 270 \) mV and \(f = 0.4 \) kHz, corresponding to a nominal deviation of 30 kHz, is connected to the sound input, and the demodulated AF reference level at the audio measurement device is defined as 0 dB. No video signal is pending.

Measurement: 1) The AF signal is switched off and the FuBK video signal is connected to the video input with \(V_{\text{VIDEO pp}} = 1 \) V. The audio level in relation to the reference calibration level is measured as ratio \(a_{pp} = 20 \log (V_{\text{FuBK}})/(V_{\text{nominal}}) \).

2) AF and video signal are switched off. The noise ratio in relation to the AF reference calibration level is measured as signal-to-noise ratio \(a_{S/N} \).

7-108
Description of the measurement configuration to measure the oscillator interference FM

Broadband Amplifier 30 dB; e.g. OM 361 from Philips

Modulation Measurement Device
e.g. FAM from R&S

Audio Output
Channel 1

Oscillograph for Visual Control

Filter: 300 Hz-20 kHz
Detector: \((P+P)/2\)
FM Setting

Channel 2

Ex. Triggering

Modulator Test Object according to Measurement Circuit 1

\(V_{0} = 10 \text{ V; Ch 30}\)
\(V_{0} = 27 \text{ V; Ch 40}\)

+ \(V_{S}\) Supply

Video Connection

Sound Generator
\(f_{VID} = 10 \text{ kHz- Sine Signal}\)

\(V_{VID,pp} = 1 \text{ V}\)

Figure 9
Description of the measurement configuration to measure the total harmonic distortion during FM operation of the sound carrier.

- **Test circuit 1 or 2 for AM**
 - Sound Input: $V_{AF\text{rms}} = 1\, \text{V}$
 - Output: $V_O = 0\, \text{V}$ connected; Oscillation is ended

- **Harmonic Distortion Analyser**
 - e.g.: BKF-10 from R&K
 - $f = 0.05-12\, \text{kHz}$

- **Modulation Measurement Device**
 - e.g.: FAM from R&S
 - Filter: 30 Hz-20 kHz
 - Detector: $(P+P)/2$ or PEAK CCIR with 50 μs Preemphasis

- **Broadband Amplifier 30 dB**
 - e.g.: OM 361 from Philips

- **Audio**

Figure 10
Description of the measurement configuration to measure the total harmonic distortion during FM operation of the sound carrier

Broadband Amplifier 30 dB; e.g. OM 361 from Philips

Modulation Measurement Device e.g. FAM from R&S FM Range Measurem.

Audio

Filter: 30 Hz-20 kHz
Detector: \((P+P)/2\)

Pin 9 is Set at max. 5.5 MHz Signal at Output by Connecting \(V_0 = -3.9\) V

Test Circuit 1a

Sound Input FM \(V_0 = 0\) V Connected, Oscillation is Ended

\(V_{AF,\text{rms}} = \text{var.}\)

Output

AF Generator with \(THD \leq 0.05\%\) e.g. CR-116

Figure 10a
Description of the measurement configuration to measure the sound and/or noise in video during FM and/or AM sound carrier modulation

Modulation Measurement Device
e.g. FAM from R&S

Broadband Amplifier
30 dB e.g. OM 361 from Philips

Test Circuit 1

Sound Generator
$V_{AF(rms)} = 1 \text{ V}$
$f_{AF} = 1 \text{ kHz}$

AM Sound Input

FM Sound Input

Video Input

Video Signal
$V_{VID,pp} = 1 \text{ V}$
$f_{VID} = 100 \text{ kHz}$

Sine Signal

Figure 11

Calibration: AF signals are switched off; video signal is pending at the video input; device to measure modulation set at AM is adjusted to video carrier; filter: 300 Hz...200 kHz; detector $(P+P)/2$; resulting modulation index is defined as $m_v = 0 \text{ dB}$.

Measurement: 1) Measurement of interference product ratio sound in video during FM modulation of the sound carrier: AF signal is connected to FM sound input; video signal is switched off; device to measure modulation is set to AM; filter: 300 Hz...3 kHz; detector: $(P+P)/2$; a ratio of $a_{S/P} = 20 \log m_{V/S}/mV$ is derived from the resulting modulation index $m_{V/S}$.

2) Measurement of interference product ratio sound in video during AM modulation of sound carrier: AF signal is connected to AM sound input; otherwise identical with measurement 1.

3) Measurement of signal-to-noise ratio in video without AM/FM modulation of sound carrier: AF signals are switched off; video signal is switched off; control voltage at pin 11 is clamped to value present during connected video signal; modulation device is set to AM; filter: 300 Hz...3 kHz; detector: RMS $\sqrt{2}$; readout in dB to reference level of calibration is $a_{S/P}$.

7-112
Description of the measurement configuration to measure the residual carrier suppression

A Voltage of $V_{12} = 0.4\, \text{V}$ is connected to Pin 12 for setting overmodulation.

Adjust C_p in Circuit 1 and dynamic residual carrier suppression to suppression maximum.

Figure 12
Description of the measurement configuration to measure the video amplitude response

Test Circuit 1

Video Signal Generator
\(V_{VID_{pp}} = 1 \text{ V} \)
e.g. PM5570 from Philips

Sine Generator
15 kHz-5 MHz Can Be Wobbled
e.g. TM503 from Tektronix Triggered by Line Sync Signal

Measurement Demodulator
E.g. AMF 2 from R&S

Oscilloscope

Demodulated Video Signal

\(a_V = 20 \log \frac{V_{min}}{V_{max}} \) (dB)

Video Input

Line Sync Signal

Trigger Input

White

Black

\(V_{max} \)

\(V_{min} \)

Figure 13
Static modulation characteristic of the FM sound modulator

\[Q = 25; \quad R_1 = 6.8 \, \text{K} \]
\[f_{\text{osc}} = 5.5 \, \text{MHz at } \Delta V_{1/2} = 0 \, \text{V} \]
\[V_1 = \text{Voltage at Pin 1} \]
\[V_2 = \text{Voltage at Pin 2} \]

Figure 14

Description of the measurement configuration to measure the 1.07 MHz moires

Spectrum Analyser (e.g. 8566 A from HP)

Test Circuit 1

Video Input

Sound Generator (Sine Signal)

\[f = 4.43 \, \text{MHz} \]

\[V_{\text{VID,pe}} = 250 \, \text{mV}: \] Frequency carrier level lies below the activation point of the video amplitude control and has been set to provide a ratio of 17 dB with respect to the video carrier.

Figure 15

7-115
Modulation index during negative video modulation and/or the voltage at pin 12 versus current at pin 12.

Modulation depth is calculated as $m_0 = (2 \times m)/(1 + m)$ from the modulation index. Prerequisite is a sine-shaped modulation.

m_N = modulation index for negative modulation
m_P = modulation index for positive modulation

If a resistor is connected to ground at pin 12 to adjust modulation depth, the resistor is calculated as $R_{12/m} = (V_{12/m})/I_{12}$.

7-116
Modulation index during positive video modulation and/or the voltage at pin 12 versus current at pin 12

![Graph showing modulation index and voltage curves]

Figure 16

Modulation depth is calculated as $m_D = (2 \times m)/(1 + m)$ from the modulation index. Prerequisite is a sine-shaped modulation.

m_N = modulation index for negative modulation
m_P = modulation index for positive modulation

If a resistor is connected to ground at pin 12 to adjust modulation depth, the resistor is calculated as $R_{12/m} = (V_{12/m})/I_{12}$.
The picture to sound carrier ratio of $a_{p/s} = 13$ dB was set via the loaded Q factor Q_L without external voltage at pin 16.

![Graph showing the relationship between $a_{p/s}$ and $AV_{16/2}$]

Figure 17

To adjust the picture to sound carrier ratio, a component was used with a resistance of typ. 11.5 kΩ at pins 17, 18.

The loaded Q factor of the resonant circuit was derived from the internal resistance $R_{17/19}$ connected in parallel with the external resistor R_e.
Measurement of the sound oscillator FM deviation without preemphasis and deemphasis; \(f_{AF} = 1 \, \text{kHz}; \) modulation deviation, sensitivity \((\Delta f_{AF})/(\Delta V_{AF}) = 0.38 \, \text{kHz/mV}; \) \(V_{AF} = \) var; detector \((P+P)/2; \) AF filter 30 Hz to 20 kHz, measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a.

Figure 18
Measurement of the sound oscillator FM deviation without preemphasis and deemphasis;
\(f_{AF} = 1 \text{ kHz} \); modulation deviation, sensitivity \(\frac{\Delta f_{AF}}{\Delta V_{AF}} = 0.38 \text{ kHz/mV} \); \(V_{AF} \) var; detector \((P+P)/2 \); AF filter 30 Hz to 20 kHz, measurement in accordance with CCIR 468-2
DIN 45405; test circuit 1 a

Figure 18a
Sound oscillator harmonic distortion without preemphasis and deemphasis;
AF signal routed in at pin 1; AF amplitude = 150 mVrms; AF filter 30 Hz to 20 kHz;
detector (P+P)/2; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a

Figure 18 b
Sound oscillator frequency without preemphasis and deemphasis;
AF signal routed in at pin 1; AF amplitude = 150 mV_{rms}; AF filter 30 Hz to 20 kHz;
detector (P+P)/2; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1a
Sound oscillator frequency with pre-/deemphasis; AF filter 30 Hz to 20 kHz; measurement in accordance with CCIR 468-2 DIN 45405; test circuit 1; $V_{AF} = 1 \, V_{rms}$
Description of the measurement configuration to measure the video signal control characteristics and the dynamic signal suppression in video frequencies.

Figure 19
Characteristic of the video signal control circuit

Figure 20

Static and dynamic mixer test with respect to balance characteristics based on a typical component

Figure 21
Measurement of the static output impedance

\[Z_{15} = \frac{\Delta V_{15}}{\Delta I_{15}} \]

\[Z_{13} = \frac{\Delta V_{13}}{\Delta I_{13}} \]

Figure 22
Output circuit S parameter

Typ. output capacity is approx. 1 pF

Figure 23
Oscillator section S parameter

Pin 3 or 7 <-> Pin 4 or 6

S_{11} S_{12} S_{21} S_{22}

Pin 5 <-> Pin 5

Figure 24

$Z_0 = 75 \Omega$
Application circuit 1

5.5 MHz Sound Oscillator Circuit

TDA 5660 P

Reference 7.5 V

FM AF Input

220 kΩ

0.5 μF

220 pF

10 nF

2,2 pF

2,7 pF

3,3 pF

3,9 pF

2,2 pF

2,7 pF

V_s = 9.5-13.5 V

25 kΩ

33 kΩ

Dynamic Residual Carrier Adjustment (If Required)
at Pin 2

Channel 30...40
V_{DV} 10...28

L_6...L_9 Balun Transformer with Ferrite Core

10 nF

1 nF

L_6 L_7 L_8 L_9

2,7 pF 0,8...8 pF

1,5 pF

300 Ω

1,5 pF

L_2 L_3

10 μF

0,5 μF

75 Ω

TDA 5660 P

Video

18 17 16 15 14 13 12 11 10

1 2 3 4 5 6 7 8 9

22 kΩ

220 kΩ

220 pF

BB 505 B

47 kΩ

10 nF

+V_d

+V_s

This Material Copyrighted By Its Respective Manufacturer
Application circuit 2

5.5 MHz Sound Oscillator Circuit

L6...L9 Balun Transformer with Ferrite Core

TDA 5660 P

220 kΩ

FM AF Input

Reference 7.5 V

0.5 μF

220 pF

10 nF

47 kΩ

BB 505 B

Channel 3

7-130

This Material Copyrighted By Its Respective Manufacturer
Application circuit 3

5.5 MHz Sound Oscillator Circuit

Signal Output

L₆...L₉ Balun Transformer with Ferrite Core

Video

10 μF

0.5 μF

75 Ω

FM AF Input

Reference 7.5 V

220 kΩ

220 pF

10 nF

0.5 μF

Symmetrical Oscillator Layout

Harmonic Crystal

Operated in Series Resonance

TV IF 38.9 MHz

Vₛ = 9.5-13.5 V

IF Filter Neosid

1) 2 Turns

2) 12 Turns
Application circuit 4

5.5 MHz Sound Oscillator Circuit

RT 6.8 kΩ
33 pF

+V_{bd}

10 nF

L_6...L_9 Balun Transformer with Ferrite Core

1 nF

Video

10 μF
0.5 μF

75 Ω

10 nF

TDA 5660 P

1 2 3 4 5 6 7 8 9

220 kΩ
220 pF
10 nF
Quartz
33 pF

V_{bd} = 9.5 V-13.5 V

FM AF Input

to Pin 2
Residual Carrier Adjustment if Required

This Material Copyrighted By Its Respective Manufacturer
Application circuit 5

5.5 MHz
Sound Oscillator Circuit

$+V_S$

10 nF

1nF

$L_6\ldots L_9$ Ballun
Transformer with Ferrite Core

Video

75Ω

10 μF

0.5 μF

TDA 5660 P

1

2

3

4

5

6

Quartz

10 nF

27 pF

47 pF

1 μF

220 kΩ

220 pF

22 kΩ

0.5 μF

FM AF Input

Alternative 2:
Series Crystal Oscillator with
Harmonic Crystal
Good Oscillating Characteristics
TV IF 38.9 MHz

$V_S = 9.5 V-13.5 V$

to Pin 2
Residual Carrier Adjustment
If Required

25 kΩ

33 kΩ

This Material Copyrighted By Its Respective Manufacturer